The Terminal Archaic ushers in a suite of social and economic changes in the south-central Andes and, consistent with these developments, obsidian begins to circulate in significantly greater quantities during this period. Obsidian is increasingly used for projectile points during the Terminal Archaic, a trend that continues into the Formative Period (Burger, et al. 2000: 294).
Regional patterns in Terminal Archaic sites are somewhat difficult to assess from surface finds because the Terminal Archaic is lacking in exclusive diagnostic artifacts in both the lithic or ceramic artifact classes. As is shown inXFigure 3-10X, the most common projectile point styles that belong to the Terminal Archaic, such as Types 5B and 5D, also persist through the ceramic periods, leaving only type 5A and part of type 4F as diagnostic to exclusively the Terminal Archaic (Klink and Aldenderfer 2005: 48). Furthermore, by definition, the Terminal Archaic is a preceramic period, which precludes a ceramic means of assigning chronology. From site organization characteristics, a site might be considered to be a Terminal Archaic site if it has pastoralist attributes but it is aceramic and has series 5 projectile point types represented that belong, at least partially, to the Terminal Archaic.
The beginnings of the Andean agropastoral strategy are apparent during this period at sites like Asana where seasonal residential movement occurred between the high sierra and the puna (Aldenderfer 1998: 261-275;Kuznar 1995). Another attribute of the Terminal Archaic at Asana is a disappearance of ceremonial features. Evidence for a shift from hunting to pastoralism comes primarily from evidence of corrals (Aldenderfer 1998), from changes in the ratio of deer to camelid remains, and from the ratio of camelid neonate to adult remains. At sites where the process has been observed, the transition to full pastoralism at various sites in the Andes is usually perceived as a gradual process dating to sometime between 3300 to 1500 BCE At Qillqatani, however, the transition was relatively abrupt and it occurred in level WXXIV that dates to approximately 2210-1880 BCE (XTable 3-1X).
While the number of excavated Terminal Archaic sites is relatively small, general processes are apparent from recent work at several sites in the south-central Andean highlands.
At Ch'uxuqullu on the Island of the Sun, Stanish et al.(2002)report three obsidian samples from the Chivay source in Preceramic levels. Eight obsidian flakes were found in aceramic levels and were described as being from a middle stage of manufacture, and three of these were sourced with NAA. Two samples came from levels with a14C date of 3780±100bp (Teledyne-I-18, 314; 2500-1900 BCE) and a third Chivay obsidian sample comes from an aceramic level that immediately predates the first ceramics level which occurred at 3110±45bp (AMS-NSF; 1460-1260 BCE). Citing paleoclimate data, the authors observe that boat travel was required to access the Island of the Sun at this time.
Terminal Archaic projectile points in the Ilave valley demonstrate the dramatic shift in the frequency and use of obsidian that occurred in this time period (SectionX3.4.4X). XRF analysis of 68 obsidian artifacts excavated from Jiskairumoko show that the Chivay source was used with particular intensity in this period. The XRF study found that 97% of obsidian bifaces from Terminal Archaic and Early Formative levels at Jiskairumoko were from the Chivay source, however published obsidian studies from all time periods show that typically 90% of all obsidian analyzed from Titicaca Basin sites are from the Chivay source (XTable 3-3X).
The percentages of obsidian tools and debris remain generally similar to those in the Late Archaic level except that the counts are much higher (XFigure 3-7X). By count, obsidian tools are doubled, and obsidian debris is 4.3 times greater, and all the obsidian has visual characteristics of the Chivay type (Aldenderfer 1999).
Based on the density of obsidian, the relationship with the Chivay source area 221 km away seems to be well-established by this time, and it is a relationship that becomes even more well-developed in the Early Formative. Six samples of obsidian were analyzed at the MURR facility from Terminal Archaic contexts that are associated with a radiocarbon date of 3660±120 (Beta-43926; 2210-1880 BCE). All six obsidian samples were from the Chivay source.
At the site of Asana, obsidian reappears at the end of the Terminal Archaic during the Awati Phase dated to3640±80 (Beta-23364; 2300-1750 BCE)where it makes up 0.4% of lithic materials, but this obsidian was not from the Chivay source. It was judged from distinctive visual characteristics to have come from the Aconcagua obsidian source only 84 km to the east of Asana, near the town of Mazo Cruz(Aldenderfer 2000). Aconcahua type obsidian has characteristics that are less desirable for knapping due to fractures and perlitic veins that cross cut the material (see Appendix B.1), and while it was possible to derive sharp flakes for shearing and butchering functions, the material was probably not used for projectile point production(Frye, et al. 1998).
The shift to Aconcahua obsidian in the Awati phase at Asana is particularly puzzling given the evidence for Chivay obsidian circulation at this time period. It is precisely at the end of the Terminal Archaic that a dramatic spike in the use of Chivay obsidian at Qillqatani (SeeXTable 3-5XandXFigure 3-7X) took place. One may ask: Why is it that when the occupants of Qillqatani are importing Chivay obsidian in unprecedented quantities, the people of Asana are getting only small quantities of low-quality obsidian? In addition, this low-quality obsidian comes from Aconcahua, a source adjacent to Qillqatani?
Given the pattern of early Chivay obsidian at Asana, these Terminal Archaic distributions suggest that the high sierra residents at Asana were not participating in an altiplano-based circulation of goods as the Qillqatani residents. The residents of Asana never again participate in the circulation and consumption of Chivay obsidian, while at Qillqatani the consumption of Chivay material continues strongly for another one thousand years.
Obsidian from alternative sources in the circum-Titicaca region, including the unlocated sources of Tumuku and Chumbivilcas types, are used in greater quantity during the Terminal Archaic judging from associated projectile point evidence provided in Burger et al.(2000: 280-284).
Evidence from close to the Alca obsidian source provides new information about long distance interaction during Terminal Archaic. At the site of Waynuña at 3600 masl(Jennings 2002: 540-546)and less than one day's travel from the Alca obsidian source, recent investigations have uncovered a residential structure with evidence from starch grains resulting from the processing of corn as well as starch from arrowroot, a plant necessarily procured in the Amazon basin(Perry, et al. 2006). Given the long distance transport of arrowroot, it is conceivable that the plant material arrived as a form of reciprocation or direct transport from travelers moving between the Amazon and the Alca obsidian source. The Cotahuasi valley also has major salt source and other minerals that would potentially draw people procuring such materials. The starch samples were found in a structure on a floor dated by two14C samples. One sample was dated to 3431±45 (BGS-2576) 1880-1620 BCE, and another was 3745±65 (BGS-2573) 2350-1950 BCE
Further north, the Quispisisa type obsidian was particularly abundant during the Terminal Archaic at the preceramic coastal shell mound site of San Nicolas, along the Nasca coast, in a context associated with early cotton(Burger and Asaro 1977;Burger and Asaro 1978: 63-65). Quantitative data on the consumption of obsidian at San Nicolas are unavailable and the temporal control is weak because the "cotton preceramic" date is derived from association with cotton and no ceramics, not from direct14C dating.
The distribution of obsidian from all three major Andean obsidian sources: Chivay, Alca, and Quispisisa, expanded considerably during the Terminal Archaic. It is notable that both the Chivay and Alca sources expanded, but the distribution remained confined to the sierra and altiplano areas of the south-central Andes. In comparison, obsidian from the Quispisisa source (340 linear km to the north-west of the Chivay source), has been found in significant quantities in Ica on the coast of Peru. While many of the early coastal obsidian samples have weak chronological control, the quantities of Quispisisa obsidian found in possible Archaic contexts is noteworthy. The fact that Chivay obsidian has never been found in coastal areas, and Alca is not found on the coast after the Paleoindian period, is remarkable considering the extensive evidence of coastal use of Quispisisa obsidian beginning in the Terminal Archaic.