A number of models have been presented for regional interaction and exchange in the south-central Andes (Bandy 2005;Browman 1974;Browman 1980;Browman 1981;Burger and Asaro 1978: 68-70;Dillehay and Nuñez 1988;Nuñez and Dillehay 1995 [1979];Stanish 2003). This study evaluates a selection of these models at the Chivay obsidian source in the highlands of Arequipa. Renfrew explored various configurations for interaction and his "exchange modes" are reviewed above in Chapter 2 (Figure 2-2). These models will be discussed with respect to activity at the Chivay source area and material expectations for what may result from each model in the vicinity of the obsidian source. It should be noted that due to the extremely thin cortex on many Chivay obsidian nodules, decortication is not a consistently useful measure of reduction level or labor investment, but none-the-less the Upper Colca lab analysis sought to measure percentage of remaining cortex on flaked stone artifacts. When the geological cortex is of the extremely thin variety, it is sometimes left on the face of tools and it does not pose an obstacle to knapping. As cortical flakes from obsidian with a thin cortex are often smooth, and can be equally sharp, one should therefore not assume that nodules will be decorticated in the quarry area.
A number of modes of procurement are explored here, but these acquisition and exchange modes are not mutually exclusive either in time or space. That is, a variety of processes were likely to have been occurring simultaneously. For example, a independent caravan have transported an obsidian nodule to a site in the Ilave river valley, and then obsidian nodule may have been transmitted through down-the-line trade from the Ilave area to the Tiwanaku area. These models, therefore, will focus specifically on procurement and initial transport from the Chivay source because that is where more direct material correlates for these different models can be expected.
Direct acquisition by the end user entails high mobility and multiethnic access to the Chivay source. In this model, those traveling to the source would procure only sufficient obsidian for their household or community needs and no more. The evidence of procurement at the source would be the direct impacts of communities of consumers where obsidian was perhaps circulated in a context of generalized reciprocity but specifically not exchanged against goods in truequebarter, as that is a different type of procurement. Thus, this category consists of direct, personal visits by the immediate consuming household throughout prehistory.
Model |
Exchange Mode |
Description |
Material Correlates |
Direct Access |
None |
Personal (household) procurement through visits to the source. No exchange. |
High variability in procurement, advanced reduction, low density production. Possible presence of discarded non-local low-value materials, and non-local temporary architecture. |
Down-the-line |
Reciprocity, including barter |
Local procurement supplying regional demand through exchange. Barter relationships, delayed reciprocity, and other arrangements between neighbors may have been reciprocated with obsidian. |
Low variability in procurement, medium reduction, low to medium density of procurement and reduction. Local debris and architecture at procurement area. Non-local portable objects brought into region possible from reciprocation. |
Caravans, Independent |
Freelance or non-market central places, reciprocity and barter. |
Household organized caravans transporting a variety of goods near the Colca. Procurement and transport of obsidian as one of these goods. |
Production associated with pastoral facilities, dense processing activity that is moderately systematic. Small triangular proj. point production, possible evidence from variety of non-local goods and architecture. |
Caravans, Administered |
Emissary, colonial enclave, entrepôt. Redistribution, barter. |
Elite commissioned and delegated caravans transporting goods near the Colca. Obsidian procurement for elite use at regional center. |
Production with pastoral facilities. Systematic reduction by part time specialists. Possibly non-local elite-related material. Possible evidence of control of source. |
Table 3-12. Models of procurement and exchange for Chivay obsidian. Compare terms with those used in Figure 2-2 and Figure 3-3.
Based on low population densities during the Early Holocene it is assumed that the earliest regional consumers of Chivay obsidian in the south-central Andes, the residents of Asana circa 9400 BP, acquired obsidian directly. Direct household acquisition of resources, such as salt procurement, persists to this day in a few places in the Andean highlands. It is possible that the multi-ethnic nature of access to Andean salt mines may serve as a model for procurement that occurred at Chivay during much of prehistory.
As it is generally the altiplano pastoralists that possess the major means of transport, llama pack animals, and direct household procurement by such groups was perhaps common for many types of goods. For example, herders from the community of Paratía (Flores Ochoa 1968: 87-109), to the north-west of Juliaca in the department of Puno, made regular trips to the Colca valley to acquire agricultural goods. If Paratíans traveled directly, it is likely that they used the Quebrada Escalera route passing to the north of Nevado Huarancante which would pass only a few kilometers from the Maymeja area of the Chivay source. On the return voyage from the Colca, if llamas were not overly burdened, a special stop could have been made to acquire a few nodules of obsidian. Similarly, the household-organized llama caravans described by Nielsen (2001) could well have obtained lithic raw material for household consumption if their travel route passed adjacent to a scarce raw material source on a return journey.
This mode of transport requires that consuming households had the social and physical means to travel to the obsidian source. The ability to partake in regional transport, even in a logistical fashion described by Flores Ochoa and by Nielsen, required strong animals, the food security to undergo a risky journey, peaceful conditions and personal security on the isolated travel routes, probable social relationships or contracts with communities encountered along the way, and knowledge of the extraction source area. Conditions of multiethnic access were likely variable in prehistory and knowledge of travel routes and sources of raw material were best obtained through cordial relations with local groups. In short, this means of obsidian distribution requires relatively cosmopolitan travelers with the resources to personally visit the sources of goods needed by the household. This mode of transport is relatively inefficient because individual households or communities sharing resources, by definition, have to personally acquire and produce obsidian in this model of obsidian procurement.
In the immediate vicinity of the obsidian source archaeological evidence of the direct acquisition mode would produce high variability in procurement, but relatively small quantities in production because consumption would be limited to the households of those visiting the source. Greater amounts of advanced reduction evidence, including bifacial thinning flakes and tools, broken and discarded during manufacture, will be in evidence at the source area. This type of procurement would have the greatest chance of resulting in diagnostic projectile points in the area as advanced reduction and potential discard in the area of the source is expected. When temporal control is available, primarily from datable organic material in excavated contexts, direct acquisition should result in irregular visits to the source area based on household need. In excavation units cultural material will likely be low-density, as soil and perhaps ash from adjacent active volcanoes will have time to accumulate as visitation rates are low.
There is some chance that undecorated, non-local pottery might be found in association with quarrying or with adjacent rest area bofedal zones. For example, Formative Period ceramics from the southern Lake Titicaca are typically fiber tempered, but in the north basin and in the Colca they are grit tempered. Evidence of fiber tempered plainware may have resulted from discard during direct access procurement by southern Titicaca Basin visitors. Other temper and paste characteristics may serve to identify non-local pottery. Alternately, non-local pottery may result from reciprocation activities (i.e., the Down-the-line model), but the notion here is that non-decorated, utilitarian pottery may have been too crude to have served as barter goods.
The multiple reciprocal exchanges model involves the direct acquisition of obsidian by local people for the express purpose of transferring the obsidian to neighboring communities in exchange for other items. In this model, people residing in Chivay area, perhaps no more than one day's travel from the source, procure material and transport it to a location where the obsidian is then exchanged with neighbors.
This kind of procurement resembles Renfrew's (1975: 520) "Reciprocity" and the "Down-the-line" modes (see Figure 2-2), where goods are exchanged with neighboring groups of roughly equal status through a variety of configurations that are essentially reciprocal in some form. While a synchronic barter of obsidian for, say, a chunk of ochre from the neighboring region is easiest to describe conceptually, reciprocity relationships are a manifestation of a wide range of social mechanisms (Section 2.2.2). In the context of the Chivay area, reciprocal exchange arrangements such as barter for other products, or for grazing rights, for labor, or for social functions such as bridewealth, may be evident. Furthermore, delayed reciprocal arrangements between neighbors are extremely common. Evidence of Down-the-line exchange may be encountered in a wide variety of socio-political contexts from Archaic Foragers to agro-pastoralists living on the periphery of states during the Late Prehispanic. If demand for a product is sufficiently high, archaeological evidence may be encountered of individuals devoting themselves to procurement in order to satisfy regional demand, but substantial quantities of goods would have to be reciprocated because the households that are sponsoring this increased procurement would have fewer provisioners working to bring subsistence to the household. Thus, if down-the-line demand is sufficiently great then the households devoting themselves to elevated rates of procurement would need to barter products for subsistence goods. In the Andes, the pattern observed from items like salt (Concha Contreras 1975: 74-76;Nielsen 2000) suggests that in modern circumstances when demand, and barter values, are sufficiently high, then the down-the-line network may be simply by-passed in favor of procurement through personal or caravan acquisition. Caravans from the consuming zone or adjacent highland areas will make the journey to procure the material and transport it for household use and for barter (a combination of the Direct Access model and the Independent Caravans model).
In a functioning Down-the-line system the flow of information is also important. The changes in the regional demand for a product like obsidian can return to the source area procurers through direct requests, or it might be reflected in increased barter value in a market context. Information exchange may also return specific demands from consumers as to the size, form, or quality of the source material. The temporal regularity of down-the-line reciprocal trade may also be quite variable, as down-the-line networks may dwindle and then be revived during a seasonal gathering or ceremonial occasion. Reciprocal relationships can take the form of mutualism and buffering, they may result from a need to complement the resources on a neighbor's territory, and they often present opportunities for ambitious individuals to advance their interests through differential access to non-local goods.
Down-the-line procurement involves local people visiting the Chivay source and acquiring goods to supply the reciprocal exchange network, however large that it may be. In the quarry area one should expect local visitors, and therefore local styles in both discarded materials and local architecture. Procurement may take place in the context of embedded economic activities, such as hunting forays into the high country or pasturing of camelids in the rich bofedal adjacent to the source.
If reciprocation for obsidian takes the form of portable objects, such as non-local ceramics, one may encounter diagnostic, non-local goods in the communities adjacent to the obsidian source. These may be in the form of styles belonging to neighboring communities, or more exotic styles may be found on non-local goods that could have arrived through the exchange network from even more distant areas. There is a high likelihood that reciprocation for obsidian would have taken place in other forms as well: goods that are perishable, labor, or other assets that are otherwise less easy to detect.
If locals are involved obsidian procurement at the Chivay source one may also find that the large nodules available at the Chivay source are used in the local economy as well. That is, if nodules in the Chivay source are up to 30cm in length then large flakes, either cortical or non-cortical, may be expected to have been discarded in residential contexts in local communities. If large nodules are available then those that are not exchanged with reciprocal partners are put to use for local needs. Thus when large cores and flakes are procured in the Chivay source area, then appropriately large flakes should be discarded in the middens of communities in the adjacent consumption zone in the upper Colca.
Procurement and initial reduction at the source will have relatively low variability because it is conducted by the same local methods. Local people will have better knowledge of high quality extraction loci and perhaps there is lower variability in procurement locations as a result. As reciprocity networks, and particularly barter arrangements, are contingent on visual attributes of bartered items one should expect medium reduction of material at the source or in the adjacent communities. At the very least, nodules will be partially decorticated and an initial strike that provides entry into the core should be expected, as this serves to expose the quality of material on the interior to barter partners. Furthermore, if transport does not involve camelid cargo animals (because reciprocity is either taking place pre-domestication during the Archaic Forager period, or otherwise does not involve camelids) one might expect a greater concern for the weight of the nodules and therefore further reduction in the vicinity of the obsidian source.
More advanced reduction may also be expected as it minimizes risk and waste by producing blanks, preforms, and prepared cores in the vicinity of the source where obsidian is abundant. However, according to the Down-the-line model producers have the greatest social distance, and therefore the least information, about their consumers. Advanced reduction limits the possible forms that artifacts may take, and therefore producers would need to know what kinds of tools consumers were planning to produce in order to move beyond initial stages of reduction. Thus medium level reduction might be expected, but not an abundance of advanced reduction at the Chivay obsidian source.
Long distance transport of goods by way of camelid caravans was well established in the prehispanic Andes. The strongest evidence for the importance of caravan transport comes in the form of ethnohistoric and ethnoarchaeological studies described earlier in this chapter, however archaeological evidence of caravan traffic is usually very light and it often requires inference from indirect evidence. The "Independent Caravans Model" described here consists of caravans organized on the household level, although ethnographic studies show that, in practice, the members of several households will often band together for company and for safety while participating in long distance caravans. It is worth pointing out that independent long distance transport does not necessarily involve cargo animals. It is possible that small quantities of obsidian were carried bytraveling peddlers. As a variant to this model, one should consider that peddlers carrying small portable items, mostly cultural goods like herbs, shell, feathers, but potentially small obsidian tools or cores, could have circulated objects widely without the assistance of llamas.
According to this model, a household with a sufficient number of cargo animals, usually castrated male llamas, will initiate a trade caravan by transporting goods that they expect will be in demand, to regions that they anticipate will have complementary goods to offer them. According to some descriptions, caravans are pursuing a directed acquisition of specific goods and then they return directly home, while other models describe entire circuits where herders acquire goods, travel, barter for other goods, travel some more, perhaps re-trade their new goods and so on; finally returning to their place of origin several months later.
The mere presence of products distributed over larger distances is not proof of caravan transport, either household organized or administered, because other modes such as direct acquisition and down-the-line models actually result in widely dispersed goods as well. Furthermore, many of the distinctive objects that archaeologists recognize as non-local are often small enough to have been transported without cargo animals. Establishing the beginnings of caravan transport is not a simple task because there is no one signature for long distance caravan organization that is distinctive from other modes of transport. Furthermore, many of the goods are believed to have been perishable, complicating efforts to interpret prehispanic trade caravan patterns. Finally, studies of contemporary caravans emphasize that diversified strategies characterize caravan driving, whether in making daily decisions while on the trail, or in the larger context of economy and exchange. It is thus difficult to define a consistent indicator for caravan activity.
Portable diagnostic artifacts, whether decorated ceramics or other exotic goods, are often relatively small and therefore the artifact weight and total quantity frequently cannot be used to differentiate between caravan transport, traveling peddlers, and down-the-line exchange. The temporal regularity of exchange, however, is a consistent measure that archaeologists can recover from stratified deposits. When regular caravan transport routes developed then the scheduling of such transport may have been linked to the timing of annual events such as harvests and annual ceremonies, and if so these cyclical patterns would result a steady accumulation of non-local goods through time. In contrast, down-the-line exchange depends upon the articulation of many individual exchanges and it is not linked to the acquisition of scheduled harvest products in the same manner as caravan transport and therefore the presence non-local goods would have been irregular.
In terms of the network configurations discussed earlier (Figure 2-3), the configuration that describes the diffusion of obsidian in the region is distinct from the configuration of the regular articulation between herders and farmers that involved the barter of pastoral products for agricultural products. However the regular conveyance of some agricultural goods adjacent to a raw material source creates a context for conveying larger quantities of obsidian regionally. Ethnographic studies indicate that caravans will opportunistically embed exchange into other activities. For example, Nielsen (2000: 488) explains that caravans primarily organized around salt transport would carry a variety of other trade items, and they would occasionally stop to procure raw materials, such as lithics, when the caravan route travels past a known source. Similarly, there is caravans that visited the Colca valley in prehistory from the Titicaca Basin were passing with 3 km of the Chivay source if they used one of the popular routes into the Colca from the south-east direction. Thus, procurement of obsidian was likely to have been associated with long distance exchange opportunities.
Caravan procurement would have consisted of pastoralists traveling to the Chivay source, acquiring obsidian that they believed to have exchange value, perhaps processing the nodules to some extent, and then transporting the material to consumers or to other traders in areas far from Colca. As temporality is a significant part of caravan organization, regular and dense procurement activities are expected when a caravan undertakes a detour from the principal travel route. Some preparation or maintenance of the trail from the principal travel route to the obsidian source is expected if the animals are heavily laden. The amount of processing and initial reduction in the source area probably reflected the number of days that a caravan would have been willing stop, and conversely the transport of whole nodules is conceivable with the assistance of cargo animals such that some extra grams of weight were less of a limiting factor. As mentioned, cortex is often very thin on Chivay obsidian, therefore it would not be surprising if some percentage of the material transported away from the source area included unreduced, whole nodules.
Ethnoarchaeological studies report that caravan drivers look for camps that include high quality pasture, water, and corrals if possible. When these features occur close to an extraction site, a relatively dense obsidian processing area may be found nearby because herders can nourish their livestock while simultaneously working stone. Because of the temporality of caravan activity, procurement was probably intensive, though episodic, through time. When caravans or animals were present, processing would occur and then the material would be conveyed away and the quarry area would see little use until the next episode of intense production. Evidence of production may be variable, however, because caravans could also transport whole nodules without very much difficulty.
Many of the artifact types that were produced from obsidian transported by caravans can deduced based on archaeological evidence acquired from consumption contexts dating to the Terminal Archaic and later. The principal artifact form made from obsidian during the time that camelid caravans conceivably operated (subsequent to the Late Archaic), is the small triangular projectile point diagnostic to the Terminal Archaic and later. This is not to say that other tool forms were not being made, as other non-diagnostic biface forms could also date to the Terminal Archaic or later, however the vast majority of bifacially-flaked obsidian artifacts are projectile points. Furthermore, cores were likely transported away from the obsidian source because simple flakes serve as valuable cutting tools. Therefore, the majority of obsidian production would have prioritized the production of cores and flakes that serve as blanks for triangular point production. If advanced reduction occurred in the quarry area it is likely that small, triangular point forms were the objective.
Reduction strategies that target the production of small triangular points were probably relatively flexible because these point forms are not especially long or delicate, and therefore it would have been possible to produce the appropriate blanks from a variety of core forms. None-the-less, the overall variability in formal tools forms produced from obsidian is exceptionally low because series 5 points look quite similar. Therefore in terms of intensified production from the Terminal Archaic and onward, relatively consistent reduction strategies in the procurement workshop zone may be encountered.
Because these caravans were independent, one might expect slightly greater variability than in the other models of obsidian distribution because various individual households were participating in this procurement, and methodological variation by region might be reflected in the reduction methods. Finally, independent caravans may behave in other, relatively variable ways such as in architecture, in divergent ceramic styles, and in the types of obsidian pieces that were being exported.
Ethnohistoric evidence suggests that elites commissioned long distance trade caravans to procure materials that were used in a variety of elite strategies at the regional center. As discussed above, Stanish argues that Titicaca Basin elite-administered long distance trade involved acquiring goods for favorable barter rates in distant valleys and then acquiring prestige from the redistribution of these goods. Late Prehispanic elites were probably in a good position to initiate large caravans: they had immense camelid herds and their followers owned them tax payments in the form of labor. In addition, elites would have had the surpluses necessary to initiate a large scale trading venture.
Would such caravans have visited the Chivay source and extracted obsidian for elite consumption or redistribution? Stanish (2003: 69) argues that all Prehispanic trade was administered trade, as opposed to market-driven trade, but he specifically excludes trade in obsidian as "small and light" and capable of being transported through down-the-line exchange. Obsidian does not appear to have been a high prestige item along the lines of precious metals in the prehispanic Andes. Under the Inka there is evidence of control of access to tunnels leading to rich gold mines in the Andes (Burger and Glascock 2002: 364). With obsidian, however, there is no evidence of elite control either in obsidian consumption patterns in regional centers, or in the Arequipa obsidian quarry areas that are generally dispersed and it would have proved difficult to limit access to them (Jennings and Glascock 2002: 115-116). Thus extensive elite-administered acquisition or redistribution of obsidian should not be expected. Nevertheless, given the importance of exchange and non-local goods in issues relating to the origins of social complexity, any evidence of elite-organized raw material procurement should be studied closely.
Elite-administered caravans would be relatively difficult to differentiate from independent caravans in their source activities. Elite related diagnostic pottery may be encountered in the vicinity of the source area. There may have been some degree of greater standardization if these were part time or full-time specialists working for the elites. Elite-sponsored procurement may involve greater intensification than would be expected from independent caravan procurement because these task groups likely have been organized and dedicated to the procurement objective. Finally, the export of large nodules may have increased as elite-sponsored caravan trains were reportedly large and capable, and the weight of nodules would not have overly interfered with the progress of the caravan following this model. In addition, if the object of elites was prestige building, larger nodules would probably have been more impressive in the distant consumption zone. In short, differentiating elite sponsored caravans at the source may be relatively difficult unless pottery or some other diagnostic material is found to have been associated with procurement.