This chapter reviews methods and equipment used in the course of the Upper Colca Archaeological Research Project, and it describes the creation of indices and measures that are used in analyses in subsequent chapters. Research at the Chivay obsidian quarry presented two principal challenges. First, the obsidian source itself is situated in a rugged, high altitude landscape that required working out of backpacker campsites and involved careful decisions regarding time budgeting during survey and excavation at the source. Second, raw material source areas present a challenge in the sheer volume of archaeological materials that are typically found in these areas. Sources require a modification of the established "site-oriented" survey paradigm for mapping and sampling during fieldwork, and for analysis during lab work. Anadditional goal of this project was to implement mobile GIS to record archaeological distributions in a digital format that integrates easily with a GIS database, and at a finer scale of resolution than is possible using traditional archaeological survey methods.
This chapter will review the research methods used both in the field during survey and excavation work, and in the subsequent lab analysis. Research design required an explicit selection of survey methods and these will be discussed below. Laboratory analysis of artifact collections was broad such that, for example, simple flakes were analyzed with nearly the detail of projectile points. This expansive analysis strategy required explicit sampling methods so that detailed analysis took place on representative samples from across geographical space and across artifact types, as sampling reduced the total count of artifacts requiring detailed analysis. Collections from survey and excavation were analyzed in two stages, (1) basic sorting and weighing of all collections, and (2) detailed analysis of selected artifacts from the larger population. The integration of field and laboratory digital data permitted the production of detailed summaries promptly for a Peruvian government report, and it allowed for the integration of GIS spatial analysis tools with the detailed data of lab analyses.
Raw material sources are archaeologically complex features because, as foci for ancient procurement, there are frequently a large number of overlapping palimpsest occupations. A siteless survey approach is theoretically compelling (Binford 1992;Dunnell 1992;Dunnell and Dancey 1983;Ebert 1992;Foley 1981;Thomas 1975), however in practice most projects must balance detailed mapping against expediency and recording speed, as will be described below. The theoretical aims of this research were to detect and record meaningful variability in prehispanic artifacts and features throughout the study area, but also to focus on concentrations of lithic reduction activity and the variable material types that were evident in lithic scatters. The Upper Colca survey was not a "siteless survey" if that technique is taken to mean that the position of every artifact is recorded individually. Rather, it involved recording concentrations of non-diagnostic artifacts as loci in a mobile GIS system using a GPS polygon to delimit the loci (Tripcevich 2004;Tripcevich 2004). The result is a regional survey approach that is approximately as fast as traditional survey recording methods, but with much finer resolution and with greater detail on data that are more relevant to the theoretical goals of the research as determined by the field researchers.
The approach to data recording taken with this research project was essentially two-pronged where the mobile GIS archaeological recording system was complemented by more subjective notebook records written in a narrative form. These two complementary recording methods were employed, to some extent, in every data recording situation.
Method 1 - Digital forms with a spatial reference:The field crew aimed to record comparable and relatively objective data categories used digital forms linked to GPS-based spatial provenience in the mobile GIS data recording system. This system shares many of the advantages, and the limitations, of traditional, paper-based fieldwork forms.
Method 2 - Personal notebooks:Complementing Method 1, all team members had field notebooks where they were meant to record both data and more abstract observations on a daily basis at a variety of scales including the local, site-level scale, observations about regional patterns, and the relevance to larger goals of the project. Field notebooks may also take the form of digital audio recorded as one walks over a site.
While a two-pronged approach using both objective forms (traditionally, as paper forms on a clipboard) and field journals is not unusual, the distinction between the two systems is made more explicit by the use of mobile GIS. The digital recording system takes care of two aspects of archaeological feature and artifact recording: spatial positioning and data logging into comparable, form-based attributes. Conversely, the field notebooks fill the important role of capturing a range of other insights from fieldwork that are difficult and inefficient to capture in a digital form. In a notebook, observations and reflections on the contexts and patterns under study are more naturally recorded in narrative form, along with schematics, flow charts, or casual site sketches. The importance of reflection and observation has long been known to geographers and other field scientists.
There is at present enthusiasm for field mapping and their techniques… But map what and to what purpose? Is not this possibly another horn of the dilemma? ...Routine may bring the euphoria of daily accomplishment as filling in blank areas; the more energy goes into recording, the less is left for the interplay of observation and reflection (Sauer 1956).
Field notebooks provide an important contrast to the regular, systematized data notation of the mobile GIS system. Furthermore, many of the fieldworkers did not have access to the mobile GIS system, and as there was only one system in the 2003 Upper Colca team then only one person could be logging data into that system at a given moment. Months after the fieldwork was over, in the course of the analysis process, the various field notebooks provided daily observations, detailed notes on sites, and an overview that corroborated the geographically detailed and categorical organization of the mobile GIS database. Another valuable form of complementarity between the two systems is that one is geographical while the other is temporal in structure. Mobile GIS is inherently spatially focused, as it is a cumulative process of recording and improving spatial features with attributes and mapping detail, and when the GPS is activated the user is automatically viewing data layers in close proximity to the current location. Field notebooks, however, are temporally organized as they are logged chronologically as the field research progresses. Field notebook pages are easily photocopied and scanned into a file such as PDF, allowing the written logs can join the digital database albeit in an unsearchable form. Ultimately these two forms of data acquisition complement one another, and as mobile GIS increases in capability and in popularity, the dirt-smudged field journal will most likely continue to serve an important, material function.